
Genetics and Bioinformatics 1

Bioinformatics softwares
(R/PLINK)
GBIO0002

Archana Bhardwaj

Outline
 R

 Features of R

 Simple Data Visualization

 Advance Data Visualization

 Data Transformation

 PLINK

Genetics and Bioinformatics 2

Genetics and Bioinformatics 3

 R is a free software environment for statistical computing and grpahics

 R is considered to be one of the most widely used languages amongst statisticians , data
miners, bioinfomaticians and others.

 Other commercial statistical packages are SPASS , SAS, Matlab

Definition of R

Genetics and Bioinformatics 4

Statistical language GUI

SAS SPSS

Genetics and Bioinformatics 5

Differences between Matlab and R

1. Open source:

• R is an open source while Matlab is not open source

2. Speed:

• R is slower than Matlab

3. Functionality:

• R is mainly used for statistical analysis.

• Matlab is used for performing various engineering applications like image

processing.

4. Ease of use :

• R follows programming lagugage syntax.

• Matlab is easy to program as multiple toolbox are availableGenetics and Bioinformatics 6

R GUI

Less fancy and no frills, but free !

Genetics and Bioinformatics 7

Why to learn R ?
 Since it is free and open-source.

 R consist of wide selection of additional libraries.

 Main library repositories CRAN and Bioconductor.

 A massive set of packages for statistical modelling, machine learning, visualization, and
importing and manipulating data.

 Powerful tools for communicating your results.

 Deep-seated language support for data analysis. This includes features like missing
values, data frames, and vectorization.

Genetics and Bioinformatics 8

 Cutting edge tools. Researchers in statistics and machine learning will often publish
an R package to accompany their articles. This means immediate access to the very
latest statistical techniques and implementations.

 RMarkdown makes it easy to turn your results into HTML files, PDFs, Word
documents, PowerPoint presentations, dashboards and more.

 Shiny allows you to make beautiful interactive apps without any knowledge of HTML
or javascript.

 RStudio, the IDE, provides an integrated development environment, tailored to the
needs of data science, interactive data analysis, and statistical programming.

 R can connect easily to high-performance programming languages like C, Fortran,
and C++.

Why to learn R ?

Genetics and Bioinformatics 9

 R’s metaprogramming capabilities allow you to write magically succinct and concise
functions.

 Excellent environment to handle ggplot2, dplyr, data.table, and more.

 Compared to other programming languages, the R community is more focused on
results than processes.

Why to learn R ?

Genetics and Bioinformatics 10

https://www.r-project.org/

and do the following (assuming you work on a windows computer)

Install R

Genetics and Bioinformatics 11

https://www.r-project.org/

Choose download site

Genetics and Bioinformatics 12

Choose Windows as target operation system

Genetics and Bioinformatics 13

Click base

Genetics and Bioinformatics 14

Click Download R 4.0.2

Download the .exe file and run it (choose default answers for all questions)Genetics and Bioinformatics 15

https://rstudio.com/products/rstudio/download/

Install Rstudio

Genetics and Bioinformatics 16

Genetics and Bioinformatics 17

Rstudio layout

Genetics and Bioinformatics 18

 Bottom left : console window . Here you can type simple commands after the
> prompt and R will execute your command. This is the most important window,
because this is where R actually does stuff.

 Top left : editor window (also called script window). Collections of commands
(scripts) can be edited and saved.

 Top right : workspace/history window. In the workspace window, you can see which
data and values R has in its memory. You can view and edit the values by clicking on
them. This history window shows what has been typed before.

 Bottom right : files/plots/packages/help window. Here you can open files, view plots
(also previous plots), install and load packages and use the help function.

RStudio

Genetics and Bioinformatics 19

Genetics and Bioinformatics 20

Use R or RStudio

Lets use it!

Genetics and Bioinformatics 21

Operators and DATA TYPES

 Variables store one element

x <- 25

Here x variable is assigned value 25

 Check value assigned to the variable x

> x
[1] 25

 Basic mathematical operators that could be applied to variables : (+), (-), (-
),(*)

 Use parenthesis to obtain desired sequence of mathematical operations

Variables/Operators

Genetics and Bioinformatics 22

Calculator

R can be used as a calculator. You can just type your equation in the command windows after
the > :

> 10 + 20

Workspace

You can also give numbers a name. By doing so, they become so-called variables which can be
used later. For example, you can type in the command window:

> a = 4

Genetics and Bioinformatics 23

 You can also ask R what a is (just type a ENTER in the command window):

> a

 Or do calculations with a :
> a * 5

 To remove all variables from R’s memory, type

> rm(list=ls())

Genetics and Bioinformatics 24

c() ,

>x <- c(1,2,3,4,5)
>x

>y <- c("a", "b", "c", "d")
>y

Concatenation function

Genetics and Bioinformatics 25

 Vectors have only 1 dimension and represent enumerated sequence of data. They can also
store variables

> v1 <- c(1,2,3,4)
> mean (v1)

 The elements of a vector are specified/modified with braces (e.g. [number])
> v1[1] <- 48
v1
[1] 48 2 3 4

Vectors

Genetics and Bioinformatics 26

Logical operators

 These operators mostly work on vectors, matrices and other data types.

 Type of data is not important, the same operators are used for numeric and character
data type

Genetics and Bioinformatics 27

R workspace

 Display all workplace objects (variables, vectors etc.) via ls():

> a= 10
> b =20

> ls()
[1] "a" "b"

 Useful tip : to save workplace and restore from a file use:

>save.image(file="workspace.rda")
>load(file="workspace.rda")

Genetics and Bioinformatics 28

 Any function in R has help information

 To invoke help use ? Sign and help():

> ? mean
> help(mean)

Information of function

Genetics and Bioinformatics 29

 Data could be of 3 basic data types:

 numeric

 Character

 logical

Numeric variable type :

> x <- 1
> mode(x)

[1] "numeric"

Data types

Genetics and Bioinformatics 30

logical variable type :

> y <- 3 < 4
> y

[1] TRUE
> mode(y)

[1] "logical"

Character variable type :

> a = "bioinfo"
> mode(a)

[1] "character"

Genetics and Bioinformatics 31

 The main data objects in R :

 Matrices (single data type)

 Data frames (supports various data types)

 Lists (contains set of vectors)

 Matrices are 2D objects (rows/columns) :

> m <- matrix(0,2,3)
> m

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0

Data objects

Genetics and Bioinformatics 32

 List contain various vectors. Each vectors in the list can be acessed by double braces
[[number]]

> x <- c(1,2,3,4)
> y <- c(2,3,4)
> L1 <- list(x,y)
> L1

[[1]]
[1] 1 2 3 4
[[2]]
[1] 2 3 4

List

Genetics and Bioinformatics 33

 Data frames are similar to matrices but can contain various data types

> x <- c(1,5,10)
> y <- c("A","B","C")
> z <- data.frame(x,y)

> z
x y

1 1 A
2 5 B
3 10 C

Data frames

Genetics and Bioinformatics 34

Genetics and Bioinformatics 35

RStudio : Advance Feature

Genetics and Bioinformatics 36

install.packages("rmarkdown")

 Markdown is a simple formatting language designed to make authoring content
easy for everyone.

 Rather than write in complex markup code (e.g. HTML or LaTex), you write in plain
text with formatting cues.

R markdown

install.packages("ggplot2")
install.packages("ggridges")

Genetics and Bioinformatics 37

library(ggplot2)
library(ggridges)

ggplot(iris, aes(x = Sepal.Length, y =
Species, fill = factor(stat(quantile)))) +

stat_density_ridges(
geom = "density_ridges_gradient",
calc_ecdf = TRUE,
quantiles = c(0.025, 0.975)

) +
scale_fill_manual(

name = "Probability", values =
c("#FF0000A0", "#A0A0A0A0",
"#0000FFA0"),

labels = c("(0, 0.025]", "(0.025, 0.975]",
"(0.975, 1]")

)

Genetics and Bioinformatics 38

 Run code

• Click option File -> knit document

Report done

Genetics and Bioinformatics 39

Genetics and Bioinformatics 40

Inbuilt functions in R

duplicated()function in R

> duplicated(c(1,2,1,3,1,4))

 Duplicate data can be removed during analysis.

 It returns a logical vector that tells you whether the specified value is a duplicate
of a previous value.

For all those values which are duplicate in
the sample, true is returned.

Genetics and Bioinformatics 41

Genetics and Bioinformatics 42

 file.choose() to walk through your directory to select a file and load.

 In case you don't want header then set header=FALSE.

> data <- file.choose()

Read data in R

Genetics and Bioinformatics 43

> data_R <- read.table(data)
> data_R

> data_R
sample1 sample2 sample3 sample4 sample5 sample6

gene1 3 1 3 1 3 1
gene2 2 2 2 2 2 2
gene3 1 7 1 7 1 7
gene4 2 6 2 6 2 6
gene5 3 3 3 3 3 3
gene6 3 2 3 2 3 2
gene7 2 2 2 2 2 2
gene8 1 1 1 1 1 1

Genetics and Bioinformatics 44

Write data in R

 In R, we can write data frames easily to a file, using the write. table() command.

 The first argument refers to the data frame to be written to the output file, the
second is the name of the output file.

 By default R will surround each entry in the output file by quotes, so we use
quote=F

> write.table(x, file, sep = " ", row.names = TRUE, col.names = TRUE)

 Rows which have NA values can be removed using the na.omit() function as below:
 Download data from website

> read <- read.table(file="data_read2.txt")

> read

sample1 sample2 sample3 sample4 sample5 sample6

gene1 3 1 3 1 3 1

gene2 2 2 2 2 2 2

gene3 NA 7 1 7 1 7

gene4 2 6 2 6 2 6

gene5 3 3 3 3 3 3

gene6 NA 2 3 2 3 2

gene7 2 2 2 2 2 2

gene8 NA 1 1 1 1 1

> na.omit(read)

sample1 sample2 sample3 sample4 sample5 sample6

gene1 3 1 3 1 3 1

gene2 2 2 2 2 2 2

gene4 2 6 2 6 2 6

gene5 3 3 3 3 3 3

gene7 2 2 2 2 2 2

na.omit() function in R

Genetics and Bioinformatics 45

table() function in R

To count the number of observations in each level of factor, we can use the R table() command as below:

> data(iris)

> head(iris)

> table(iris$Species)

Genetics and Bioinformatics 46

If you want to combine data from different sources in R, you can combine different sets of data in three
ways:

The str() command is designed to
help you examine the structure of a
data object rather than providing a
statistical summary.

merge() function in R

Genetics and Bioinformatics 47

https://www.r-project.org/about.html

 Input from keyboard
> z <- scan()

Input/output

 You can use readline() for inputing a line from the keyboard in the form of a string:

> w <- readline()
bioinfo

> w
[1] “bioinfo"

 In interactive mode, one can print the value of that variable by just typing the variable
name or expression. In batch mode, one can use the print() function.

Genetics and Bioinformatics 48

 The function read.table() is used usually.

 The default value of a header is 'FALSE' and hence when you do not have a header,
you need not say such.

• Basically, the character strings are considered as R factors. For turning this "feature"
off, you can include the argument as.is=T in your call to read.table().

 When you have a spreadsheet export file, i.e. having a type .csv where the fields are
divided by commas in place of spaces, use read.csv() in place of read.table().

 You can also use read.xls for reading core spreadsheet files.

Input/output

Genetics and Bioinformatics 49

Exercise

 a <- c(1,2,3,4,5,6,7,8)

 b <- c(3,4,5,6,7,8,10)

 Calculate mean of a and b

 Check if mean(a) > mean(b) or not ?

 Download data from website

 Write a program to read data
(data_read3.txt) and display content.

Genetics and Bioinformatics 50

The summary() command will provide you with a statistical summary of your data.

> summary(iris)

The summary command is, therefore, more useful as we can see minimum, maximum,
mean, etc values. The summary() command works for both matrix and data frame
objects by summarizing the columns rather than the rows.

summary() function in R

Genetics and Bioinformatics 51

Name Commands in R

 Name command and its variants are used to find or add names to rows and columns of
data structures.

 Below specified are few of the commands and their explanation:

 names() – It works on matrix or data frame objects.

 rownames() – It works on matrix or data frame objects and is used to give names to

rows.

 colnames() – It works on matrix or data frame objects and is used to give names to

columns.

 dimnames() – Gets row and column names for matrix or data frame objects, that is,

it is used to see dimensions of the data frame.

Genetics and Bioinformatics 52

Exercise

 Write a program to read data (data_read3.txt) and display content.

 Display rownames() and colnames()

Genetics and Bioinformatics 53

 The process of creating samples is called subsetting.

 As we know, data size is increasing exponentially.

 So, the data is divided into small-sized samples and analysis of samples is done.

 Different methods of subsetting in R are:

 $

 The dollar sign operator selects a single element of data. The result of this operator is

always a vector when we use it with a data-frame.

 [[

Creating Subsets of Data in R

Genetics and Bioinformatics 54

• To retrieve 5 rows and all columns of already built-in dataset iris, the below
command, is used:

> data(iris)
> iris[1:5,]

Genetics and Bioinformatics 55

Genetics and Bioinformatics 56

Data Visualization in R

 R Programming helps us to learn this art by offering a set of inbuilt functions and

also libraries to build visualizations and present data.

 Before we move forward for the technical implementation of the visualization, let’s

see first how to select the right chart type.

Data Visualization in R

Genetics and Bioinformatics 57

Genetics and Bioinformatics 58

Data Visualization in R - Simple

 R provides very rich set of plotting possibilities

 The basic command is plot()

 Each library has its own version of plot() function

 When R plots graphics , it opens ‘graphical device’ that could be either a window or file

Plotting in R

Genetics and Bioinformatics 59

Plotting functions

 R standard graphics available through package graphics, include
several functions that provide statistical plots, like:

Genetics and Bioinformatics 60

> data(iris)
> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

> plot(iris$Sepal.Length,iris$Petal.Length)

Plot function

Genetics and Bioinformatics 61

 Histogram
 A histogram is used to plot a continuous variable. Also, It helps to break the data

into bins and shows the frequency distribution of these bins. Thus, we can
always change the bin size and see the effect it has on visualization.

> hist(iris[,1])
> hist(iris[,2])
> hist(iris[,3])

Hist function

Genetics and Bioinformatics 62

> x <- c(1,5,10)
> y <- c(20,30,40)
> boxplot(x,y)

Boxplot function

Genetics and Bioinformatics 63

> iris_filtered <- iris[,1:4]

> heatmap(as.matrix(iris_filtered))

 We use it for the intensity of colours. It is also used to display a relationship between
two or three or many variables in a two-dimensional image. Thus, it allows us to
explore two dimensions of the axis and the third dimension by an intensity of colour.

Heatmap in R

Genetics and Bioinformatics 64

Genetics and Bioinformatics 65

Data Visualization in R - Advanced

Library installation

install.packages

> install.packages("ggplot2")

ggplot2 installed successfully!

Genetics and Bioinformatics 66

 You can create a graphics device of PNG format using png(), JPG format using
jpg() and PDF format using pdf().

 Plot your data.

 Closing the graphics device and saving the image using dev.off.

Method to Save Graphs to Files in R

 In order to save graphics to an image file, there are three steps in R:

> jpeg("c:/mygraphs/myplot.jpg")
> x <- c(1,2,2)
> y <- c(3,4,4)

> plot(x,y)
> dev.off()

Genetics and Bioinformatics 67

Corrgram Library installation

install.packages

> install.packages("corrgram")

Correlograms installed successfully!

Genetics and Bioinformatics 68

Corrgram in R

 We use it to test the level of correlation and also among the variable available in the
dataset.

 Thus, the cells of the matrix can be shaded or coloured to show the co-relation value.

> library(corrgram)
> data(mtcars)
> corrgram(mtcars, order=TRUE, lower.panel=panel.shade, upper.panel=panel.pie,
text.panel=panel.txt, main="Car Milage Data in PC2/PC1 Order")

Genetics and Bioinformatics 69

Genetics and Bioinformatics 70

circlize Library installation

install.packages

> install.packages("circlize")

circlize installed successfully!

Genetics and Bioinformatics 71

> mat = matrix(rnorm(36), 6, 6)
> rownames(mat) = paste0("R", 1:6)
> colnames(mat) = paste0("C", 1:6)

> chordDiagram(mat)

> library("circlize")

Genetics and Bioinformatics 72

matrix data in R
Genetics and Bioinformatics 73

igraph Library installation

install.packages

> install.packages("igraph")

igraph installed successfully!

Genetics and Bioinformatics 74

library(igraph)

#Define Nodes
nodes=cbind('id'=c('Fermenters','Methanogens','carbs','CO2','H2','other','CH4','H2O'),

'type'=c(rep('Microbe',2),rep('nonBio',6)))
nodes

#Define Links
links=cbind('from'=c('carbs',rep('Fermenters',3),rep('Methanogens',2),'CO2','H2'),

'to'=c('Fermenters','other','CO2','H2','CH4','H2O',rep('Methanogens',2)),
'type'=c('uptake',rep('output',5),rep('uptake',2)),
'weight'=rep(1,8))

A graph in made up of vertices (also called nodes or points) which are connected
by edges (also called links or lines).

Genetics and Bioinformatics 75

links

#Make the network
library(igraph)
net = graph_from_data_frame(links,vertices = nodes,directed = T)
plot(net)

Genetics and Bioinformatics 76

Change Appearance

> colrs.v = c(nonBio = "lightblue",Microbe = "gold") #node colours
> V(net)$color = colrs.v[V(net)$type]

> colrs.e = c(output = "grey", uptake = "magenta") #edge colours
> E(net)$color = colrs.e[E(net)$type]

> plot(net, edge.curved=0.2,vertex.size=30) #make nodes bigger, curve arrows

Genetics and Bioinformatics 77

Comparison of both plots

Genetics and Bioinformatics 78

library(ggridges)

 The geom geom_density_ridges calculates density estimates from the provided data
and then plots those, using the ridgeline visualization.

>ggplot(iris, aes(x = Sepal.Length, y = Species)) + geom_density_ridges()

Density ridgeline plots

 The extent to which the different densities overlap can be controlled with the scale
parameter.

 A setting of scale=1 means the tallest density curve just touches the baseline of the next
higher one.

 Smaller values create a separation between the curves, and larger values create more
overlap.

>ggplot(iris, aes(x = Sepal.Length, y = Species)) + geom_density_ridges(scale = 0.9)

 We can also specify quantiles by cut points rather than number. E.g., we can indicate the
2.5% and 97.5% tails.

> ggplot(iris, aes(x = Sepal.Length, y = Species)) + stat_density_ridges(quantile_lines = TRUE, quantiles =
c(0.025, 0.975), alpha = 0.7)

Density ridgeline plots

 Using the geom geom_density_ridges_gradient we can also color by quantile, via the calculated stat(quantile)
aesthetic. Note that this aesthetic is only calculated if calc_ecdf = TRUE.

> ggplot(iris, aes(x=Sepal.Length, y=Species, fill = factor(stat(quantile)))) + stat_density_ridges(geom =
"density_ridges_gradient", calc_ecdf = TRUE, quantiles = 4, quantile_lines = TRUE) +
scale_fill_viridis_d(name = "Quartiles")

Quantile plots

> ggplot(iris, aes(x = Sepal.Length, y = Species, fill = factor(stat(quantile)))) +
stat_density_ridges(
geom = "density_ridges_gradient",
calc_ecdf = TRUE,
quantiles = c(0.025, 0.975)

) +
scale_fill_manual(
name = "Probability", values = c("#FF0000A0", "#A0A0A0A0", "#0000FFA0"),
labels = c("(0, 0.025]", "(0.025, 0.975]", "(0.975, 1]")

)

 We can use the same approach to highlight the tails of the distributions.

Genetics and Bioinformatics 83

Data Transformation

Dplyr pacakge

 dplyr is a grammar of data manipulation, providing a consistent set of verbs that
help you solve the most common data manipulation challenges:

 mutate() adds new variables that are functions of existing variables
 select() picks variables based on their names.
 filter() picks cases based on their values.
 summarise() reduces multiple values down to a single summary.
 arrange() changes the ordering of the rows.

 The easiest way to get dplyr is to install the whole tidyverse:

>install.packages("tidyverse")

 Alternatively, install just dplyr:

>install.packages("dplyr")

starwars %>% filter(species == "Droid")

Dplyr pacakge

Genetics and Bioinformatics 86

 Principal Component Analysis (PCA) is a useful technique for exploratory data
analysis, allowing you to better visualize the variation present in a dataset with
many variables.

 It is particularly helpful in the case of "wide" datasets, where you have many
variables for each sample.

 Turning your original variables into a smaller number of "Principal Components"

Genetics and Bioinformatics 87

 PCA is a type of linear transformation on a given data set that has values for a certain
number of variables (coordinates) for a certain amount of spaces.

 This linear transformation fits this dataset to a new coordinate system in such a way
that the most significant variance is found on the first coordinate.

 In this way, you transform a set of x correlated variables over y samples to a set of p
uncorrelated principal components over the same samples.

 Where many variables correlate with one another, they will all contribute strongly to
the same principal component.

Principal Component Analysis (PCA)

Genetics and Bioinformatics 88

 Let us use the mtcars dataset, which is built into R.

 This dataset consists of data on 32 models of car, taken from an American
motoring magazine (1974 Motor Trend magazine). For each car, you have 11
features, expressed in varying units (US units).

 Compute the Principal Components

 Because PCA works best with numerical data, you'll exclude the two categorical
variables (vs and am).

Principal Component Analysis (PCA)

Genetics and Bioinformatics 89

 You are left with a matrix of 9 columns and 32 rows, which you pass to the prcomp()
function, assigning your output to mtcars.pca.

> mtcars.pca <- prcomp(mtcars[,c(1:7,10,11)], center = TRUE,scale. =
TRUE)

 You will also set two arguments, center and scale, to be TRUE. Then you can have a
peek at your PCA object with summary().

> summary(mtcars.pca)
>str(mtcars.pca)

Principal Component Analysis (PCA)

Genetics and Bioinformatics 90

>biplot(mtcars.pca)

 Let us draw biplot

Exercise

 install library ggfortify

 Load data iris
 >data(iris)

 Perform the PCA analysis

 Develop biplot

 List highly correlated variables

 Display graph by use of following command :

Genetics and Bioinformatics 91

autoplot(iris.pca, data = iris, colour = 'Species')

autoplot(iris.pca, data = iris, colour = 'Species', label = TRUE, label.size = 3)

R Linear Regression

 What is Linear Regression?
Regression analysis is a statistical technique for determining the

relationship between two or more than two variables.

 There are two types of variables in regression analysis –

independent variable and dependent variable.

 Linear Regression is of the following two types:

 Simple Linear Regression – Based on the value of the single explanatory variable,
the value of the response variable changes.

 Multiple Linear Regression – The value is dependent upon more than one
explanatory variables in case of multiple linear regression.

Genetics and Bioinformatics 92

 Linear regression is one of the most basic statistical models out there.

Height=a+Age∗b

 In this case, “a” and “b” are called the intercept and the slope respectively.

 With the same example, “a” or the intercept, is the value from where you start

measuring.

 The slope measures the change of height with respect to the age in months. In general,

for every month older the child is, his or her height will increase with “b”.

 A linear regression can be calculated in R with the command lm.

 In the next example, use this command to calculate the height based on the age of the
child.

R Linear Regression

Genetics and Bioinformatics 93

 x <- lm(y~x, data=z)

 summary(x) comprehensive summary of results

 print(x) precise version of the object

 deviance(x) residuals

 plot(x) returns plots: residuals, fitted values and some diagnostics

 coef(x) extract regression coefficients

Extracting information from a linear regression

Genetics and Bioinformatics 94

Let us download the data to an object called ageandheight and then create the linear
regression in the third line. The lm command takes the variables in the format:

lm([target variable] ~ [predictor variables], data = [data source])

> library(readxl)

> ageandheight <- read_excel("ageandheight.xls",
sheet = "Hoja2")

> lmHeight = lm(height~age, data = ageandheight)

> summary(lmHeight) #Review the results

R Linear Regression : example

Genetics and Bioinformatics 95

Coefficients.
In the orange square, you can see the values of the intercept (“a” value) and the slope
(“b” value) for the age. These “a” and “b” values plot a line between all the points of the
data.

Genetics and Bioinformatics 96

Genetics and Bioinformatics 97

1) Open Rstudio

2) Run small code (given in exercise)

3) Select option : html, pdf or doc

4) Save file

5) Show your reports

Exercise

Genetics and Bioinformatics 98

PLINK : GWAS DATA

 PLINK is a free, open-source designed to perform a range of basic, large-scale analyses in
a computationally efficient manner.

 PLINK is whole genome association analysis tool.

 PLINK has a well documented manual.

 Available for linux, MAC ansd MAC-DOS.

 Command line version is faster than graphical PLINK.

PLINK : Introduction

Genetics and Bioinformatics 99

 Merge two or more files

 Extracts subsets (SNPs or individuals)

 Compress data in a binary file format

 PLINK has numerous useful features for managing and analyzing genetic data

 Read data in a variety of formats

 Recode and reorder files

PLINK : Multi-feature tool

Genetics and Bioinformatics 100

 Genotype data is a text file

 Pedigree file (.ped)

 Map file (.map)

 Genotype data is a compressed binary file

 Fam File (.fam)

 Bim file (.bim)

 Bed file (.bed)

Input Files

Genetics and Bioinformatics 101

Pedigree File - the first six columns are mandatory:

 Family ID

 Individual ID

 Paternal ID

 Maternal ID

 Sex (1=male; 2=female; other=unknown)

 Phenotype

PED Input File

Genetics and Bioinformatics 102

MAP File has 4 columns:

 chromosome (1-22, X, Y or 0 if unplaced)

 rs# or snp identifier

 Genetic distance (morgans)

 Base-pair position (bp units)

MAP Input File

Genetics and Bioinformatics 103

Others Input File

Genetics and Bioinformatics 104

Genetics and Bioinformatics 105

Data Transformation

Genetics and Bioinformatics 106

Genetics and Bioinformatics 107

QC of genetic DATA

 A vital step that should be part of any GWAS is the use of appropriate QC.

 Without extensive QC, GWAS will not generate reliable results because raw
genotype data are inherently imperfect.

 Errors in the data can arise for numerous reasons, for example, due to poor quality
of DNA samples, poor DNA hybridization to the array, poorly performing genotype
probes, and sample mix‐ups or contamination.

Genetics and Bioinformatics 108

The seven QC steps consist of filtering out of SNPs and individuals based on the
following:

(1)individual and SNP missingness,

(2) inconsistencies in assigned and genetic sex of subjects (see sex discrepancy),

(3) minor allele frequency (MAF),

(4) deviations from Hardy–Weinberg equilibrium (HWE),

(5) heterozygosity rate,

(6) relatedness, and

(7) ethnic outliers (see population stratification).

QC of genetic DATA

Genetics and Bioinformatics 109

Step Command Function
1: Missingness of SNPs
and individuals

‐‐geno Excludes SNPs that are missing in a large proportion of the subjects. In
this step, SNPs with low genotype calls are removed.

‐‐mind Excludes individuals who have high rates of genotype missingness. In
this step, individual with low genotype calls are removed.

2: Sex discrepancy
‐‐check‐sex

Checks for discrepancies between sex of the individuals recorded in
the dataset and their sex based on X chromosome
heterozygosity/homozygosity rates.

3: Minor allele
frequency (MAF)

‐‐maf Includes only SNPs above the set MAF threshold.

4: Hardy–Weinberg
equilibrium (HWE)

‐‐hwe Excludes markers which deviate from Hardy–Weinberg equilibrium.

5: Heterozygosity Excludes individuals with high or low heterozygosity rates

6: Relatedness

‐‐genome Calculates identity by descent (IBD) of all sample pairs.
‐‐min Sets threshold and creates a list of individuals with relatedness above

the chosen threshold. Meaning that subjects who are related at, for
example, pi‐hat >0.2 (i.e., second degree relatives) can be detected.

7: Population
stratification

‐‐genome Calculates identity by descent (IBD) of all sample pairs.
‐‐cluster ‐‐mds‐plot k Produces a k‐dimensional representation of any substructure in the

data, based on IBS.

Important Commands

Genetics and Bioinformatics 110

 It works with case/control and continuous phenotypes.

 Case-control (1df chi-square test, outputs assoc)

 PLINK will recognise this is a case/control analysis because the phenotype just has:

• 1 (for controls),

• 2 (for cases), and

• 0/-9/non-numeric (for missing).

-- assoc

Genetics and Bioinformatics 111

 Given a quantitative phenotype, --assoc writes regression statistics and Wald test
results to plink.qassoc.

Genetics and Bioinformatics 112

https://www.cog-genomics.org/plink/1.9/formats#qassoc

Genetics and Bioinformatics 113

https://jokergoo.github.io/circlize_book/book/

https://igraph.org/r/doc/aaa-igraph-package.html

https://www.statmethods.net/advgraphs/correlograms.html

Useful Link

https://jokergoo.github.io/circlize_book/book/
https://igraph.org/r/doc/aaa-igraph-package.html

